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Design of Microwave Dielectric Resonators

J. C. SETHARES, MEMBER, IEEE, AND S. J. NAUMANN

Abstract—The resonant frequencies for the fundamental modes
in circular cylindrical and rectangular parallelopiped high dielectric
resonators have been calculated by computer for a range of values
of physical dimensions and relative dielectric constant. The frequency
range extends from zero to 50 kMc/s, the relative dielectric constant
from 50 to 1800, and physical dimensions from zero to 500 mils.
Results are presented in graphical form with frequency plotted vs.
resonator length for parametric values of relative dielectric constant
and cross-sectional dimensions. A brief review of earlier work with
high dielectric resonators is included. Expressions for the resonant
frequency and fundamental mode field configurations are given.

INTRODUCTION

HE EXISTENCE of low-loss high dielectric

(e >100) resonators has been known for some time,

[1] but recently they have received a renewed
interest in connection with microwave studies [2]-[4].
Richtmyer [1], showed that a high dielectric material in
free space will exhibit radiation damping; but if €31,
the relative damping is small enough to allow the di-
electric to resonate. He investigated, theoretically, the
resonant properties of toroidal, spherical, and ring
shaped dielectric materials. A. Okaya [2] reported
X-band unloaded Q’s of 9000 at room temperature for
rutile resonators. Loaded Q was found to increase with
decreasing temperature and at 4.2°K a loaded Q of
10 000 was obtained. When the temperature was
lowered from 300°K to 4.2°K the relative dielectric con-
stant increased by 30 percent. Bell and Rupprecht [3]
reported experimental results on the loss tangent of
strontium titanate (SrTiO;) vs. temperature (—200°C
t0 250°C) at about 20 kMc/s. The measured loss tangent
was on the order of 1073 over the entire temperature
range. The dielectric constant of strontium titanate is
larger than that of rutile by roughly a factor of three.
At room temperature e~ 300 and at —180°C, e=1500
for strontium titanate.

Okaya and Barash [4] made a detailed analysis of the
resonant modes in anisotropic high dielectrics. They
identified held configurations of various modes of oscil-
lation and their respective resonant frequencies. They
concluded that, basically, two types of fundamental
modes exist; one resembles an electric dipole (E mode)
and the other a magnetic dipole (H mode) field. The
higher modes resemble multipoles. Some experimental
results were given of the relative dielectric constant of
rutile and strontium titanate as a function of tempera-
ture from 100°K to 300°K. For both materials, Q and ¢
were found to increase with decreasing temperature.
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A recent practical investigation of high dielectric reso-
nators has been conducted by Yee [5]. He calculated the
exact resonant modes of a spherical resonator, and the
approximate ones for circular cylindrical and rectangular
parallelopiped structures, assuming dielectric isotropy.
The calculated approximate frequencies agree reason-
ably well with experiment. Also studied were the effects
of metallic waveguides into which a resonator is in-
serted, field strength of lower order modes, frequency
tuning techniques, methods of coupling to the resonator,
and methods of suppressing unwanted modes. It should
be pointed out that Okaya and Yee define E and H
modes in the same way, but TE and TM definitions are
reversed. Okaya defines E modes as TE and H modes
as TM, whereas Yee defines E and H modes as TM and
TE modes, respectively. We have adopted Yee's
convention,

High dielectric resonators seem to be ideally suited for
microwave investigations involving ferromagnetic mate-
rials because of their miniature size, low loss, insensitiv-
ity to magnetic dc biasing field, and ability to concen-
trate large RF magnetic fields in small volumes. A rutile
dielectric resonator was used, for example, by Shaw [6]
to generate 2.8 Ge/s phonons at room temperature in a
4000 A nickel film deposited on a phonon supporting
substrate such as sapphire or rutile. In Shaw’s work,
rutile was used both as a microwave resonator and
phonon transmission line. (The low-frequency acoustic
properties of rutile were investigated earlier by Vick and
Hollander [7] at 10 Mc/s.)

One disadvantage of rutile and strontium titanate di-
electric resonators is their sensitivity to heat. The
dielectric constant is strongly temperature dependent
which results in a continuous resonant frequency shift
under CW operation, even at very low (milliwatt)
power levels. Stiglitz and Sethares [8] have reported a
method of heat sinking with Boron Nitride which
stabilizes the resonator very quickly with 100 mW
power dissipation in the resonator,

THEORETICAL CONSIDERATIONS

According to Yee [8], the frequencies of dominant
TE modes for rectangular (TEy;) and circular cylindri-
cal (TEyps) resonators, respectively, are given by
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where c=3X 108 m/s, €is the relative dielectric constant,
A* and B* are cross-sectional rectangular dimensions,
L the length of either resonator, 8(0 <4 <1) denotes a
fraction of half wavelength in the L direction, 8 satisfies
Jo(BA)=0, 4 is the cylinder radius, and J, the zero
order Bessel function. The two modes are shown in
Fig. 1. The expressions for E and H fields are as follows.

For the rectangular TEy, mode and et®! time
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where the x, v, 2 coordinate system origin is located at
the geometrical center of the resonator, and
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For the circular cylindrical TE;p; mode and e+!
dependence

ong
H, = HyJ(Bp) cos <———>
L
—BWH() . oz
= (52)
L
jwmoH &
E¢ = ﬂg’éﬁ?_ﬂ]o/(ﬁp) cos (?)
H¢=Ep:Ez=0 (4)

where the prime denotes differentiation with respect to
(Bp).

The preceding results are derived using the assump-
tions that H,=0 at all surfaces parallel to the z axis
(perfect open-circuit boundary conditions) ; the tangen-
tial E and H fields are continuous across surfaces per-
pendicular to the z axes; the resonators are dielectrically
isotropic; and fields outside the resonator decay expo-
nentially from their value at the boundary to zero at
infinity. The quantity & is constrained by boundary con-
ditions on E and H. Using Yee's results, (12), (13), and
(14) in this article, §/L satisfies the following equation
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and where 0 <8 <1 for both rectangular and cylindrical
resonators, In addition, the TE;¢ cylindrical mode is
dominant (lowest frequency) only if 4/L>0.48, or if

L £ cylinder diameter.

The resonant frequencies for TEy; and TE1e modes
are given by (1) and (2), respectively, subject to con-
straint equation (5). Alternatively, the resonant fre-
quencies for either resonator are given by (2) along with
constraint equation (5), if, for the cylindrical TE;qg
mode, B satisfies the first zero of J¢(84), and for the
rectangular TEj;; mode,
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If (5) is substituted into (2), the resonant frequency for
either resonator is found to be
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where F(e, 8) is defined by (7).

Equations (8) and (9) determine the frequencies in
terms of cross-sectional dimensions, dielectric constant,
and quantity 8; L is not explicitly contained in the
equations. Because of this, and since 0 prescribes the
fractional half wavelength of field variation in the L
direction, the field strength at top and bottom reso-
nator surfaces is somewhat adjustable through the cross-
sectional dimensions and dielectric constant.

The maximum and minimum allowable frequencies
for both modes follow from the asymptotic expressions
of (7) as 8 approaches zero and one.
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Therefore

B B
= — 10
27/ € <f< 27 (10)

Graphs of maximum and minimum allowable frequen-
cies are shown in Fig. 2. Using Yee's equations (12),
(13), and (14), the following expression is obtained [10]
which relates f, L, ¢, and 8
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where K=*k/83, K.=k./B and k, k. are wave numbers in
free space and in the dielectric medium, respectively.
Limiting frequencies correspond to the poles and zeroes
of (11). In principle, this expression may be used to
compute resonant frequencies from known dielectric
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Fig. 1. (a) Rectangular parallelopiped dielectric resonator in the TEuys mode. (b)
Circular cylindrical dielectric resonator in the TE;p mode.

AL
T vV 177
X .
))((Xxx\ \ | !/:o: T
L xxxl ’IH... A¥
XXX oo
XX e
LEE i
i 4 4
JT1TIX B
e
— —H FIELD
—E FIELD
(a)
18 (MILS)
0 20 40 60 80 100
100 \. h h ) f
|
90 { ft™ S
sol 1\
70
gso
gso \
gw
30
20 ™~
[~
10
0
0 30 80 120 160 200 240 280
A (MILS)
(a)

18 (MILS)
MA T
BRI ILANAY 1.
H\ \ \ ¥MN=ZT£_
MR
o
RN
= TAVAN
£ N \
oA N
2 "L AR .
3 8_\\‘& = B
& 1\, k @
ERANINNTY
NV
4 \U,olo ! I
;\ Sl T
J b

0 20 40 60 80 100 120 140
RADIUS A (MiLS}

(b)

Fig. 2. (a) Maximum frequency for TEny; and TE;g; modes. (b) Minimum
frequency for TEy; and TE 4 modes,
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constants and physical dimensions. If the dielectric con-
stant and physical dimensions are known, then calcu-
lation of the resonant frequency will in general require
iteration of frequency. If ¢, 8, and f are assumed, then
the length L may be calculated directly. The computer
was programmed for the latter case. Equations (7) and
(11) are valid for rectangular TEy; and cylindrical
TEip; modes. (The extension to include higher order
modes follows directly by redefining 8 and § in these
equations.) The asymptotic behavior of the resonant
frequency also follows from (11). We find, that for low
frequencies
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and for high {requencies

1

Thigh

The lower frequencies are independent of L, the higher
frequencies are inversely related to L. The asymptotic
behavior of f with L and /e is reflected in the curves of

Figs. 3-8.
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Figs. 3-8. Resonant frequency f vs. length L with ¢ as parameter for both cylindrical and rec-
tangular resonators. The corresponding radius 4 for the cylindrical resonator is given on each
figure. For the rectangular resonator, the corresponding dimensions 4* and B* must be ob-
tained from (6) or from Fig. 9 by using the value of 8 listed on each figure, There are an infinite
number of permissible combinations of 4* and B* for a given 8.
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Rectangular cross-sectional dimensions for

parametric values of 8.

COMPUTER PrOGRAM

The computer was programmed to calculate L for
parametric values of cross-sectional dimensions, 8, fre-
quency, and relative dielectric constant. This procedure
avoids the use of iteration, used by Yee, for calculating
resonant frequencies. It did not, however, simplify or
reduce the number of required calculations. In setting
up the program it was found convenient to use Yee's
quantities { and {,, which follows.
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Values of 3, f, and € were arbitrarily chosen; from them
¢ and {, were calculated using (13) and (14). ¢ and ¢,
were then used to calculate L from (12). Final results
are presented in Figs. 3-8. The resonant frequency is
plotted vs. length on each of the graphs. Each graph
contains a family of curves with each member corre-
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sponding to a particular value of e. For each graph the
resonator cross-sectional dimensions are given. Radius
4 of the cylindrical resonator is given explicitly; widths
A* and B* of the rectangular resonator must be calcu-
lated from the given value of 8 [using (6)]. Alternatively
A* and B* may be obtained graphically with the aid of
Fig. 9. This is a graph of A* vs. B* for parametric values
of 8. The results shown in Figs. 3-8 cover a range of
frequencies from zero to 30 kMc/s lengths from zero to
30 mils (1 mil=10"%inch), e from 50 to 500, 4 from 25
to 200 mils, and 8 from 0.01202 to 0.09619 mils~—'. This
range of 8 includes cross-sectional widths from 40 to
600 mils. The actual program included a much larger
range of values. The complete results will be presented
in graphical and tabular form in an AFCRL Research
Report [9]. The values given here hopefully include
those of most practical interest in the microwave region
at the present time.
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Impedances of Offset Parallel-Coupled

Strip Transmission Lines

J. PAUL SHELTON, JR., MEMBER, IEEE

Abstract—An offset parallel-coupled strip configuration is de-
scribed, in which the mechanical parameters are strip width, strip
offset, and ratio of strip spacing to ground-plane spacing. The electri-
cal parameters are dielectric constant, characteristic impedance,
even and odd mode impedance. The configuration is analyzed by con-
formal imapping techniques. Explicit design equations are derived in
which the mechanical parameters are expressed in terms of the elec-
trical parameters. Illustrative results are presented, and the limita-
tions on coupling strength, characteristic impedance, and strip con-
figuration are discussed.

INTRODUCTION
MANY MICROWAVE components are based

upon parallel-coupled transmission-line sec-

tions. Examples are found among directional
couplers, baluns, hybrid junctions, phase shifters, and
filters [1]-[3]. In some cases, several coupled regions
are used to obtain increased control over the theoretical
characteristics of the component. In general, multi-
section components require different coupling values for
the various sections. The subject of this paper is the
analysis of a parallel-coupled strip transmission-line con-
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figuration that permits smooth variation of coupling
from some designed maximum level to any lower value.

The first strip transmission-line technique for realiz-
ing variable coupling was edge-coupled coplanar strips
[4]. The drawback to this method is the limitation of p,
the ratio of even to odd mode impedance, to a maximum
of two or three.

Getsinger proposed a technique for achieving very
tight coupling in which a line with single center strip is
sandwiched between the two strips of a second line [5].
This method requires the use of four layers of dielectric,
and the transmission lines are unlike, one having single
strip and one having double strips. Furthermore, it is
somewhat difficult to determine the maximum coupling
that is available for a given strip spacing.

Impedance relations for parallel strips, one above the
other between ground planes, were derived by Cohn [6].
This configuration requires three dielectric layers and
provides maximum coupling for given layer thicknesses.
For this configuration, variation in coupling can be
easily achieved in practice by offsetting the strips with-
out changing the thicknesses of the dielectric layers. In
general, both strip width and overlap are functions of
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